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ABSTRACT: A new version of the tube theory based on
the de Gennes–Doi–Edwards reptation concept (reported in
Likhtman and McLeish’s work published in 2002) is evalu-
ated, modified to allow for simplified computations, and
used to study the relationship between zero-shear viscosity
and molecular weight for monodisperse entangled linear
homopolymers. The Likhtman–McLeish model combines
self-consistent theories for contour length fluctuations and
constraint release with reptation theory for monodisperse
linear polymers. Because of the nature of the Rubinstein and
Colby approach used for the treatment of constraint release,
the related term is probabilistic and requires stochastic sim-
ulations for the calculation of the relaxation modulus G(t).
This makes the Likhtman–McLeish model computationally
difficult to use. In this work we solve this problem by
generating an approximate closed-form solution for the sto-
chastic term. Then analytical integration of the relaxation
modulus function G(t) provides an expression for the zero-

shear viscosity (�0). Results of the computations of the zero-
shear viscosity and of the slope of �0 versus molecular
weight are compared with available experimental data for
monodisperse entangled linear polystyrene and polyethyl-
ene (hydrogenated polybutadiene). The model is a major
improvement over previous theoretical models, even if there
is still some disagreement between the predictions and ex-
perimental data of the slope of �0 versus molecular weight.
The possibility of inferring monomer chemistry–dependent
parameters from the zero-shear viscosity remains a difficult
task because of the introduction of a constraint-release pa-
rameter. Nevertheless, the model is a useful tool for the
prediction of linear viscoelasticity data. © 2004 Wiley Period-
icals, Inc. J Appl Polym Sci 94: 569–586, 2004
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INTRODUCTION

Early molecular theories designed to represent the
dynamics of entangled polymers have been fairly suc-
cessful qualitatively, but in general have been lacking
quantitative agreement. For example, the reptation
theory originally proposed by de Gennes,1 and later
generalized by Doi and Edwards,2 predicted a scaling
of the zero-shear viscosity with the cube of the poly-
mer molecular weight, whereas it was experimentally
shown that the power-law index was 3.4 over a con-
siderable range of molecular weights for many poly-
mers. Some experimental investigations have also ob-
tained exponents ranging from 3.3 to 3.7.3

Intensive theoretical efforts have been devoted in
the last two decades to improve the predictions of the
reptation-based tube model. A new modification of
the de Gennes–Doi–Edwards reptation concept (Likht-

man and McLeish4) was recently proposed for mono-
disperse linear entangled homopolymers with two
main improvements to enhance agreement with ex-
perimental data. The Likhtman–McLeish model com-
bines self-consistent theories for contour length fluc-
tuations (CLF) and constraint release (CR) with repta-
tion theory. Improvement of the treatment of contour
length fluctuations was achieved by using a combined
theoretical and stochastic simulation approach, which
results in a closed-form single-chain relaxation func-
tion �(t) without any adjustable parameters or ap-
proximations. Constraint release is included by using
the scheme proposed by Rubinstein and Colby.5 This
approach allows the calculation of a constraint-release
term, R(t), from the single-chain relaxation function.
Because of the nature of the Rubinstein and Colby
approach, the term R(t) is probabilistic, requiring sto-
chastic simulations for the calculation of the relaxation
modulus G(t). Longitudinal Rouse relaxation along
the chain is also taken into account in the model.
Likhtman and McLeish4 showed that accurate treat-
ment of both CLF and CR can capture quantitatively
experimental observations. However, because of the
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stochastic term, the model is computationally inten-
sive. The objective of this work is to present an ap-
proximate closed-form version of the Likhtman–
McLeish model to simplify its use. In addition, ana-
lytical integration of the material relaxation function
G(t) is performed to obtain an expression for the zero-
shear viscosity (�0). This zero-shear viscosity model is
compared with available experimental data for mono-
disperse entangled linear homopolymers. The possi-
bility of inferring monomer chemistry–dependent pa-
rameters from the zero-shear viscosity is discussed.

PHYSICAL PROCESSES IN THE TUBE MODEL

Reptation theory reduces the confinement of a high
molecular weight polymer by surrounding chains to a
tubular region. Motions perpendicular to the tube are
prohibited, whereas those parallel to the tube axis (the
primitive path) are allowed. The diffusion of the poly-
mer out of its tube is called reptation and is the main
dynamic mode of all tube models for entangled linear
polymers. However, as mentioned in the introduction,
the original reptation theory was unable to correctly fit
experimental linear relaxation moduli G� and G� and
did not properly describe �0 dependency with molec-
ular weight. This is because several important physi-
cal processes were missing from the original theory:
(1) contour length fluctuations (CLF), (2) constraint
release (CR), and (3) longitudinal stress relaxation
along the tube. Contour length fluctuations corre-
spond to a more detailed description of the escape
motion of a single chain out of its tube, taking into
account fluctuations of the path length by the inclu-
sion of all Rouse modes (bead-and-spring model).
Constraint release accounts for the movement of the
tube resulting from the movements of the surround-
ing chains. Finally, longitudinal stress relaxation,
which is also derived from the bead-and-spring
model, must not be confused with CLF. Although
CLFs describe the escape from the tube by path fluc-
tuations, longitudinal relaxation is related to the mo-
tion inside the tube and counts for 1/5 of the stress
relaxation. A more detailed description of each of
these physical processes is given by Likhtman and
McLeish.4

In the past, incorporation of CLF into the Doi–Ed-
wards (DE) model improved the power-law scaling of
the zero-shear viscosity with molecular weight (Doi6

and Milner and McLeish7). The addition of the CR
mechanism allowed an improvement in the descrip-
tion of oscillatory flow behavior, especially for poly-
disperse systems (des Cloiseaux8). Finally, consider-
ation of longitudinal relaxation remarkably improved
the theoretical predictions of G� and G� for multiarm
star/linear polymer mixtures (Miros et al.9).

The mechanisms depicted above are now relatively
well established. There is a consensus within the tube

theory community about which physical processes
should be accounted for in the tube representation of
polymer melt behavior. In their work on the theory of
linear dynamics of linear entangled polymers, Likht-
man and McLeish4 do not introduce any new physical
processes. Instead, they propose a more accurate
mathematical representation of the single-chain relax-
ation function, which describes the relaxation of the
chain in its original tube, and then they self-consis-
tently and simultaneously solve this and existing
mathematical models describing the accepted physical
processes. They show that accurate and enhanced
treatment of both CLF and CR can capture most ex-
perimental observations.

However, when nonlinear flows or large step strain
experiments are encountered, convected constraint re-
lease (CCR), introduced by Marucci,10 becomes the
main mechanism of relaxation. A new stochastic mi-
croscopic theory11 based on the tube model and in-
cluding CCR has shown good agreement with exper-
iments over a wide range of rheological data, for en-
tangled polymer solutions in nonlinear shear and
extension. A macroscopic version of that model in the
form of a simple differential constitutive equation for
linear polymers has recently been presented.12 Al-
though this model has been developed for nonlinear
flows, it can naturally be used in the limit of the linear
viscoelastic regime. However, the macroscopic ver-
sion of the model requires the fitting of a set of Ge

i–�e
i

parameters, or a discrete spectrum, which are not
representative any longer of the material molecular
structure. In this work, we present a simplified version
of the Likhtman–McLeish theory for linear rheology,4

which retains a relationship to molecular structure by
the use of monomer-dependent parameters.

MATHEMATICAL TREATMENT OF THE
PHYSICAL PROCESSES

Reptation and contour length fluctuations

According to the Likhtman–McLeish model, the start-
ing point of the solution of the full problem is the
calculation of the single-chain relaxation function �(t),
which is attributed to the escape of the single chain
from its original tube. Simultaneous treatment of CLF
and reptation by using a combined theoretical and
stochastic simulation approach results in a single-
chain relaxation function �(t) described at all times by

��t� �
8G̃f

�2 �
p�1,odd

p* 1
p2 exp��

tp2

�df
�

� �
�*

� 0.306
Z�e

1/4�5/4 exp���t� d� (1)
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The first term represents reptation and the second
one CLF. The parameter Z is defined as the number
of tube segments (i.e., Z � N/Ne), where N is the
number of monomers with friction coefficient � con-
tained in each chain, and Ne is the number of mono-
mers per tube segment (i.e., Ne � a2/b2), where a is
the tube diameter and b the Kuhn segment. The
parameter Z is also related to the entanglement
molecular weight Me, as Z � M/Me, where M is the
molar mass of the chain. Other parameters of eq. (1)
are defined as follows:

—�e is the Rouse time of an entanglement length:

�e �
Ne

2�b2

3�2kBT (2)

where kB is the Boltzmann constant and T is the
temperature.

—G̃f (Z) and �df (Z) are renormalizations of the dimen-
sionless plateau modulus and the reptation time
attributed to CLF:

G̃f�Z� � 1 	
2C1

�Z
�

C4

Z �
C5

Z3/2 (3)

�df�Z�

�d
�0��Z�

� 1 	
2C1

�Z
�

C2

Z �
C3

Z3/2 (4)

with C1 � 1.69, C2 � 4.17, C3 � �1.55, C4 � 2.0, and
C5 � �1.24.

—The reptation or disentanglement time is �d
(0) �

3Z3�e.

—Finally, p* is chosen as �Z/10, and

�* �
1

�eZ4 �
4 
 0.306

1 	
8G̃f

�2 �
p�1,odd

p* 1
p2� (5)

Constraint release

Constraint release is related to the evolution of the
tube, given that the tube is made from surrounding
chains, which are moving. To obtain a quantitative
result, different tube segments should be assigned
different mobilities mi, given that the mobilities are
distributed quite widely if CLF is taken into account.
The most detailed self-consistent algorithm, which
considers a distribution of tube segment mobilities,
and allows one to obtain the material relaxation func-
tion G(t) from the single-chain distribution �(t), was
developed by Rubinstein and Colby.5 This algorithm

consists of several steps. First, the inverse Laplace
transform P(�) of �(t) is determined:

��t� � �
0

�

P���exp���t� d� (6)

Then, one assumes that the mobilities of the tube
segments mi are distributed according to P(�), where
�/k 	 m 	 (� 
 d�)/k and where k is the elastic
constant of the sections of the chains of one entangle-
ment length long. P(�) should satisfy the normaliza-
tion condition � P(�) d� � �(0) � 1. The second step
consists in finding the spectrum of relaxation rates
dM(�)/d�, where M(�) is defined as the number of
relaxation modes slower than �. More details about
this procedure are given in the section on develop-
ment of an approximate term for constraint release
and in the Appendix. Finally, the third step is to find
the relaxation function of the Rouse tube:

R�t� � ��
0

� dM
d�

exp���c�t� d�	 (7)

where the brackets � 
 represent an average over dif-
ferent sets of mobilities that are distributed according
to P(�). A dimensionless parameter, c�, is introduced
to reflect the importance of the constraint-release
mechanism. For example, when c� � 0, there is no CR,
whereas for c� � 1, one constraint-release event oc-
curs, and leads to an effective jump of the primary
chain’s tube by a distance equal to the tube diameter a.
In other words, it is representative of the number of
retraction events necessary to result in one tube hop of
a tube diameter.11

The resulting material chain-relaxation function
(without fast Rouse modes and longitudinal relax-
ation) is given by

G�t� �
4
5 GeR�t���t� (8)

where Ge is defined as the “entanglement” or elastic
modulus:

Ge �
�RT
Me

(9)

Note that the experimentally observed plateau mod-
ulus GN

(0) is only 4/5 of Ge.

Material stress-relaxation function

To make the function G(t) complete, one must still add
the contributions from longitudinal stress relaxation
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and fast Rouse modes. Combining all of the processes,
the material stress-relaxation function takes the fol-
lowing form:

G�t� � Ge
4
5 ��t�R�t� �

1
5Z �

p�1

Z�1

exp��
p2t
�R
�

�
1
Z �

p�Z

N

exp��
2p2t
�R

�� (10)

where the Rouse time �R � Z2�e. The first term repre-
sents the contributions attributed to the escape from
the tube (reptation and CLF) described by �(t) and
constraint release R(t), the second term is longitudinal
stress relaxation, and the third term is the fast Rouse
motion inside the tube.

Monomer-dependent parameters

Monomer-dependent parameters are expected to vary
with chemistry and monomer concentration, but not
with molecular weight.11 Three of these parameters
have been discussed thus far:

(1) The elastic modulus Ge

(2) The Rouse time of an entanglement length �e

(3) The entanglement molecular weight Me, which
is related to the elastic modulus by eq. (9), Me

� �RT/Ge.

Note that in this work we are using the G definitions
of the tube parameters as described by Larson et al.13

and that the elastic modulus is larger than the exper-
imentally observed plateau modulus by a factor of
5/4. These monomer-dependent parameters are diffi-
cult to measure experimentally, but they are present in
all tube models that relate linear viscoelasticity and
molecular structure, even for branched and polydis-
perse systems. Indeed, it would be interesting to de-
rive them from simple rheological data by using an
accurate model such as Likhtman–McLeish [eq. (10)].
This is not as simple as it appears and it is usually
impossible to find a unique set of parameters that are
optimal for a particular monomer chemistry. Here we
attempt to remove some of this ambiguity by consid-
ering the zero-shear viscosity as well as the relaxation
function.

There is an abundance of experimental data related
to �0 and its dependency on molecular weight. Be-
cause the integration of the material stress relaxation
function [eq. (10)] with respect to time gives the zero-
shear viscosity

�0 � �
0

�

G�t� dt (11)

it is possible to derive the monomer-dependent pa-
rameters by fitting the model to experimental data.
For the Likhtman–McLeish model

�0

Ge�e
� f�Z, c�� (12)

with three independent parameters (Ge, �e, and c�). To
remove the dependency on the product Ge�e, we can
also look at the power law index 
 of the �0 versus
molecular weight relation [i.e., (d ln �0)/(d ln Z)]. The
relationship to experimental data comes from the
well-known empirical relation14:

�0 � K�Zw�
 (13)

where 
 � 3.4 over a wide range of molecular weights
for most entangled polymers, and K is a function of
temperature and monomer chemistry. Also, Zw is the
weight-average number of entanglements per chain in
the case of polydisperse linear polymers and simply Z
in the case of monodisperse linear polymers. Hence, it
is possible to relate the theoretical 
 to available ex-
perimental data. We will see in the results section that
this approach is partially successful in providing ac-
cess to the monomer-dependent parameters.

DEVELOPMENT OF CLOSED-FORM
SOLUTION FOR CONSTRAINT RELEASE

As mentioned previously, one of the primary goals of
this work was to develop a closed-form representation of
the constraint-release term R(t), which is available only
in stochastic form in the work of Likhtman and McLeish.4

The stochastic term in eq. (7) is the spectrum of relaxation
rates dM/d�, which is determined by following the nu-
merical procedure of Rubinstein and Colby.5 We use the
slightly modified procedure described in the Appendix
to generate multiple realizations of the spectrum of re-
laxation rates for a broad range of Z and ultimately find
average spectra for each Z. Finally, we fit a phenomeno-
logical equation to the results for all Z, thus providing a
closed-form representation of R(t) as below:

R�t� � �
0

� dM�

d�
exp���c�t� d� (14)

where M� (�) � �M(�)
.
To find a representative average M(�) � M� (�) it is

necessary to generate spectra with many sets of random
numbers at each Z (we used 25 realizations for the high-
est Z values and 235 realizations at the lowest Z values).
In general the minimum acceptable number of realiza-
tions is that which provides a value of M� (�) that no
longer changes when further realizations are added.
Some examples of M� (�) are shown in Figure 1(a).
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Because the function that is actually required for
R(t) in eq. (14) is dM� (�)/d� and the identification of the
various regimes in this function is more straightfor-
ward than in M� (�), we fit the phenomenological model
to dM� (�)/d�. Some examples of dM� (�)/d� are shown
in Figure 1(b). As shown in Figure 2, the gross behav-
ior of this function can be represented by two power
laws that intersect at � � 1/�df, given by eq. (15).

1
�e

dM�

d�
� � exp�B1���e���1/2 for � �

1
�df

exp�B2���e���5/4 for � �
1
�df

(15)

In eq. (15) there are two parameters (B1 and B2) that
are dependent on Z and �df and were determined by
fitting simultaneously the dM� (�)/d� curves resulting

Figure 1 (a) Plot of M(�) for Z values of 10, 50, and 300. (b) Spectrum of normalized relaxation rates for Z values of 10, 50,
and 300. The spectra are shifted horizontally by a factor of �df to illustrate the two regimes of this function that intersect at
� � 1/�df.
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from the stochastic simulations for Z values of 2, 10,
50, 75, 100, 150, 200, 250, and 300.

B1 �
3
2 ln�Z� 	 1.63556

B2 �
3
4 ln��e

�df
� � B1 (16)

The gross behavior represented by eqs. (15) and (16) is
insufficient to adequately capture the effect of constraint
release on the material functions and it is also necessary
to incorporate the sawtooth region that occurs at � just
greater than 1/�df. To do this it was necessary to develop
the different models for different ranges of Z described
below, all of which are encapsulated by the two power
laws given in eq. (15). For Z � 10 there is no sawtooth
function and eqs. (15) and (16) apply.

For 10 	 Z � 160, dM� (�)/d� is given by the follow-
ing equation:

1
�e

dM�

d�

� �
exp�B1���e���1/2 for � �

1
�df

exp�B1���e/�df�
�1/2�n��e��n for

1
�df

� � �
22

�df

22n�3exp�B1 	 5���e/�df�
�2��e��3/2 for

22

�df
� � � �B

exp�B2���e���5/4 for � � �B

(17)

where B1 and B2 are given by eq. (16) and

�B � 2��8n
12�/11exp�20
11�� 1

�df
�

n � 0.161 � �Z 	 10�0.2924 	 0.5

For 160 	 Z � 360, dM� (�)/d� is given by the following
equation:

1
�e

dM�

d�

� �
exp�B1���e���1/2 for � �

1
�df

exp�B1���e/�df�
�1/2�n��e��n for

1
�df

� � �
22

�df

22n�3exp�B1 	 5���e/�df�
�2��e��3/2 for

22

�df
� � �

42

�df

22n�3exp�B1 	 8���e/�df�
�2��e��3/2 for

42

�df
� � � �C

exp�B2���e���5/4 for � � �C

(18)

where B1 and B2 are given by eq. (16) and

�C � 2��8n
12�/11exp�32
11�� 1

�df
�

n � 0.161 � �Z 	 10�0.2924 	 0.5

Figure 2 Spectrum of normalized relaxation rates for Z � 50 (solid line) and two power laws intersecting at � � 1/�df
(dashed line). For � 	 1/�df, dM/d� � ��1/2 and for � � 1/�df, dM/d� � ��5/4.
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For Z � 360 eq. (18) applies except the exponent n is
0.393, which corresponds to the value of n at Z � 360
in the preceding equation.

A final issue to be dealt with in the fitting of the
relaxation rate spectrum is that of the lower limit in
the integral of eq. (14). Our function for dM� (�)/d�
does not converge to a value of zero at low � as it
should so that lim�3� M� (�) � 1. To ensure that the
preceding limit is obeyed we define a lower limit for
the integral in eq. (14), �0, such that the condition in
eq. (19) is met:

�
�0

� dM�

d�
d� � 1 (19)

This parameter was determined by nonlinear optimi-
zation for Z values of 5, 10, 25, 40, 50, 100, 150, 300, and
1000 and then correlated with Z as

�0 � �
18.56Z�4.664

�e
Z � 25

327.61Z�5.602

�e
Z � 25

(20)

The quality of fit of eq. (20) is illustrated in Figure 3. It
is worthwhile to note that the Z exponents are consis-
tent with that of the maximum time in R(t), which is
proportional to �dfZ

2. In Figure 4(a)–(c) we demon-
strate the quality of fit for the model for dM� (�)/d� and
its integral as compared to the stochastic results. In

these figures we can see that the model for dM� (�)/d�
performs very well for the three representative data
sets presented. The poorer fit of M� (�) is a result of
small inaccuracies in eq. (20) for �0. As we show in the
next section, these errors in �0 have a negligible effect
on the material properties and therefore the use of a
more complicated function in place of eq. (20) is not
warranted.

RESULTS

Relaxation function of the Rouse tube R(t)

We presented earlier the relaxation function of the
Rouse tube [eqs. (7) and (14)], which we now modify
to incorporate the new limit on the integral:

R�t, c�� � ��
0

� dM
d�

exp���c�t� d�	
� �

�0

� dM�

d�
exp���c�t� d�

where the average spectrum of relaxation rates dM� (�)/
d� is now expressed by eq. (15), (17), or (18), depend-
ing on Z.

In the previous section, comparisons were made
between the stochastic simulations and the fitted
dM� (�)/d�. At this point, R(t) can be computed using

Figure 3 Comparison between eq. (20) (line) and the �0 values optimized according to eq. (19) (symbols).
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Figure 4 Comparison between stochastic results (symbols) and phenomenological model (lines) for (a) Z � 10, (b) Z � 50,
and (c) Z � 300.



the appropriate expression for dM� (�)/d� and it be-
comes possible to compare the results of the closed-
form equation with those of Likhtman and McLeish.4

Their results for this function were presented in the
form of

R̂�t� � �4Z�e
1/4t3/4

�R
�t (21)

for Z � 300 and c� � 1, as a function of normalized
time in Figure 6 of Likhtman and McLeish.4 The com-
parison between our results and theirs is presented in
Figure 5. A small difference is observed at intermedi-
ate times, whereas the model performance is very
good at long times. The limiting value at early times is
estimated as 1.8 by Likhtman and McLeish4 for Z
� 300 and c� � 1, whereas our value is 1.96. We will
see later that the slight difference at early and inter-
mediate times does not have a strong impact on the
predictions of material properties.

To have more information on the performance our
dM� (�)/d� model, we also compared the normalized
R(t) obtained from our stochastic simulations with the
one calculated from the phenomenological model for
several other Z values. In Figure 6, we present a com-
parison for Z � 100 and c� � 1. The model gives a
good representation of the normalized R(t) obtained
from stochastic computations for all Z values studied
in this work (up to Z � 1000).

Complex modulus G*

Once we have a closed-form equation for the material
relaxation function G(t), it is possible to calculate the
complex modulus G*. As presented before, the relax-
ation function G(t) is given by eq. (10):

G�t� � Ge
4
5 ��t�R�t� �

1
5Z �

p�1

Z�1

exp��
p2t
�R
�

�
1
Z �

p�Z

N

exp��
2p2t
�R

��
The complex modulus G* is a Fourier transformation
of eq. (10):

G*��� � i� �
0

�

G�t�exp��i�t� dt (22)

and

G*��� 
 G���� � iG���� (23)

where G� and G� are the storage and loss moduli,
respectively.

For c� � 0 (i.e., constraint release removed), the
normalized complex modulus takes the following
form:

Figure 5 Normalized relaxation function of the Rouse tube, R̂(t), for Z � 300 and c� � 1. Comparison between Likhtman and
McLeish4 data and present model.
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G*���

Ge
�

32��dfG̃f

5�2 �
p�1,odd

p* 1
p2 
 ��df � i�p2�

�p2�2 � ���df�
2�

� �4
5� 0.306�

Z�e
1/4 �


*

� 1

5/4 
� � i�
�

�
�2 � �2� d


�
��R

5Z �
p�1

Z�1
��R � ip2

p4 � ���R�2 �
��R

Z �
p�Z

N
��R � i2p2

4p4 � ���R�2 (24)

whereas for c� � 0, G*(�)/Ge is given by

G*���

Ge

�
32��dfG̃f

5�2 �
p�1,odd

p* 1
p2 �

�0

� dM�

d� 
 ��df � i�p2 � �c��df�

�p2 � �c��df�
2 � ���df�

2� d�

� �4
5� 0.306�

Z�e
1/4 �


*

� 1

5/4


 �
�0

� 
 � � i�
 � �c��

�
 � �c��
2 � �2� dM�

d�
d�d


�
��R

5Z �
p�1

Z�1
��R � ip2

p4 � ���R�2 �
��R

Z �
p�Z

N
��R � i2p2

4p4 � ���R�2 (25)

which contains, of course, dM� (�)/d�. The moduli G�
and G� are obtained from the respective real and imag-
inary parts of eq. (24) or (25).

In Figures 7(a) and (b), we present normalized stor-
age and loss moduli, respectively, as a function of
normalized frequency, for c� � 1 and Z values of 2, 25,
100, 300, and 1000. Our calculations were performed
using the fitted dM� (�)/de. The comparison between
the results of Likhtman and McLeish4 and the model
with our fitted equations for constraint release is ex-
cellent. This confirms that the fit of dM� (�)/d� is appro-
priate to estimate correctly the material functions.

Limiting low rate viscosity �0

The limiting low rate or zero-shear viscosity �0 can also be
obtained by the appropriate integration of the relaxation
material function G(t) [eq. (10)], as presented in eq. (11):

�0 � �
0

�

G�t� dt

For the case without constraint release (c� � 0), the
zero-shear viscosity is expressed as

�0

Ge
�

4
5

8G̃f

�2 �
p�1,odd

p*
�df

p4 �
16
25

0.306
Z�e

1/4��*�5/4

�
�R

5Z �
p�1

Z�1 1
p2 �

�R

2Z �
p�Z

N 1
p2 (26)

whereas for c� � 0, it is given by

Figure 6 Normalized relaxation function of the Rouse tube, R̂(t), for Z � 100 and c� � 1. Comparison between stochastic
results and present model.
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p�Z
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p2 (27)

which again contains dM� (�)/d�. The last two terms in
eqs. (26) and (27) may be approximated, as shown
below, with minimal impact for Z � 4.

�R

5Z �
p�1

Z�1 1
p2 �

�2�R

60Z �2 	
1

Z 	 1�



�R

2Z �
p�Z

N 1
p2 �

�R

2Z2 (28)

Figure 7 (a) Prediction of normalized storage moduli G� and (b) of normalized loss module G� for c� � 1 and Z values of 2, 25,
100, 300, and 1000. Symbols represent data from Likhtman and McLeish4; lines represent predictions from the present model.
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In Figure 8, we compare computed normalized zero-
shear viscosity with the results of Likhtman and
McLeish4, for c� values of 0, 0.1, and 1. Again, we used
the fitted form of dM� (�)/d� to obtain our values. Ex-
cellent agreement is obtained for Z � 5. For 2 	 Z 	 5,
the viscosity is slightly underestimated.

As mentioned earlier, another interesting way to
compare �0 experimental data with theoretical predic-
tions is by examining the power-law exponent 
 � (d
ln �0)/(d ln Z), which eliminates the dependency on
the product Ge�e, leaving only Z and c� as parameters.

In Figure 9, we compare the 
-values calculated with
our dM� (�)/d� with those of Likhtman and McLeish,4

which we found by numerically differentiating their
zero-shear viscosity data. For our model, the slope of
the c� � 0 case was obtained by the numerical differ-
entiation of eq. (26), whereas for c� � 1, we differen-
tiated eq. (27). As expected, for c� � 0, the agreement
with Likhtman and McLeish4 data is excellent, and we
therefore show only our results in Figure 9. For c� � 1
we observe several oscillations in the 
 obtained with
the closed-form dM� (�)/d� equation. The maximum

Figure 8 Prediction of normalized zero-shear viscosity �0 for c� values of 0, 0.1, and 1. Lines represent data from Likhtman
and McLeish4; symbols represent predictions from the present model.

Figure 9 Comparison of the slope of the zero-shear viscosity versus molecular weight for c� � 0 and c� � 1. The dotted line
represents the empirical value of 3.4.
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around Z � 10 is attributed to the fact that we started
to incorporate sawtooth functions for Z � 10 in
dM� (�)/d� [eqs. (20) and (21)]. These functions create
oscillations in (d ln �0)/(d ln Z) and a maximum at the
point of incorporation. The peak deviation with Likht-
man–McLeish data is observed at Z slightly larger
than 10, with a 14% deviation. Elsewhere, the oscilla-
tions result in a difference of about 3–4%. Neverthe-
less, the initial part of the slope is the same, and the
overall shape and values are similar to those of Likht-
man and McLeish.4 We shall then use our model to
calculate the zero-shear viscosity to make compari-
sons with experimental data, and we will use the
Likhtman–McLeish data for calculating (d ln �0)/(d ln
Z) as will be seen in the next section. One final remark
is concerning the dotted line in Figure 9, which rep-
resents the empirical value of 3.4 over the experimen-
tal range of molecular weight generally used. We
should keep in mind that this comparison is made
between an average value (dotted line) and the instan-
taneous calculated values.

Comparison with experimental data

In their work, Likhtman and McLeish4 present a de-
tailed comparison of theoretical predictions of G� and
G� with experimental data for two sets of polystyrene
(PS) and polybutadiene (PB). They use �e and Ge as
fitting parameters (identical for all samples of fixed
monomer chemistry), and use eq. (9) to calculate Me.
They also set c� � 1. In both cases of PS data, the
agreement is very reasonable. However, in the case of
PB, the quality of fit is unacceptable: G� is underesti-
mated in the intermediate regime, and the terminal
zones are not fitted correctly. Improvement can be
obtained if they consider Ge and Me as independent
parameters. However, this leads to a product GeMe

higher by 50–60% than predicted by eq. (9). One of
their conclusions is that PS is described very well by
the theory, but that PB shows problems and that more
high-precision data are needed to confirm this dis-
agreement, which may be a first indication of nonuni-
versality of polymer dynamics.4

In our work, comparisons are focused on zero-shear
viscosity data for nearly monodisperse polyethylene
(PE) and PS. To do so, the monomer-dependent and
constraint-release parameters must be known or fitted
with sets of data of fixed monomer chemistry. Unfor-
tunately, reliable experimental values of monomer-
dependent parameters are sparse in the literature. Fur-
thermore, the constraint-release parameter c� has
rarely been mentioned, except for the Likhtman and
McLeish4 and Graham et al.11 works where c� values
of 1 and 0.1 were used, respectively.

For nearly monodisperse PE (or its near equivalent,
hydrogenated polybutadiene), most references report
values in the range of 828 to 1390 g/mol for the

entanglement molecular weight Me.
15–20 Most of these

values are derived from a measurement of the exper-
imental plateau modulus GN

(0) and the use of eq. (9),
assuming that the elastic modulus and the plateau
modulus are the same. In fact, according to Likhtman
and McLeish,4 a more appropriate relationship be-
tween the plateau modulus and the entanglement mo-
lecular weight is given by eq. (29). In the literature
values for Me only the lowest are based on eq. (29)15:

GN
�0� �

4
5

�RT
Me

(29)

The monomeric friction coefficient �, which deter-
mines the elementary time �e, is more complex to
determine than the plateau modulus, and it is ex-
tremely difficult to find reliable data about it in the
literature. Therefore we are left with two unknown
parameters, c� for constraint release and �e, which also
contains the temperature dependency. It is useful to
exploit the simulations and some experimental data
for the zero-shear viscosity to determine �e. In a first
approach, we use measurements for PE with Z 	 2,
where only the fast Rouse motion is active. In this
case, the zero-shear viscosity is determined solely by
the last term of eq. (26). One reference21 containing
many sets of data for nearly monodisperse PE (hydro-
genated polybutadiene) was considered here, where
measurements were performed for Mw � 1050 g/mol.
They found the plateau modulus to be 2.3 MPa, or Ge

� 2.88 MPa at T � 448 K. Using the density presented
by Fetters et al.15 for PE, we calculate Me to be 1000
g/mol, which is in the range of the values presented
above. For Z � 1.05, the measured zero-shear viscosity
is 0.0064 Pa s�1 at T � 448 K.21 Combined with theo-
retical predictions we find �e � 2.6 � 10�9 s at T � 448
K. We can now plot the zero-shear viscosity for all Mw

values normalized by the product Ge�e � 7.5 � 10�3 Pa
s�1 and determine which c� value best represents the
PE data.

The comparison for molecular weights ranging be-
tween 2510 and 959,000 g/mol21 is shown in Figure 10.
Error bars correspond to 10% uncertainty in molecular
weight (x-axis) and 5% in viscosity (y-axis) (smaller
than symbols). As one may observe no single value of
c� adequately represents the data of PE. The best com-
promise is c� � 0.1, as suggested by Graham et al.11 as
a universal value, considering that entangled poly-
mers are governed by universal underlying dynamics.
The value of c� � 0.1 is also close to the value derived
by Schieber22 (c� � 1/12), in his work using a slip-link
model that includes consistent constraint release, also
inspired by the ideas of Rubinstein and Colby.5

In the case of PS, many references report values of
the entanglement molecular weight Me between 18,100
and 18,900 g/mol.3,15–17,20 Again, it is most probable
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that the factor 4/5 was not used to evaluate Me [eq.
(29)], except for the lowest value recorded (13,309
g/mol), which is from the same work that reported the
lowest value of Me for PE.15 In a first approach, we
follow a procedure similar to that for PE (i.e., using
data for Z 	 2 to determine �e). This time, a data set23

with several values is available for that low range of Z
values and we can therefore obtain more reliable in-
formation than for PE, for which only one molecular
weight was available. For Z values ranging between
0.639 and 1.74, the calculated product Ge�e varies con-
siderably, as shown in Table I. We used the average
value of this product (34 Pa s�1) to shift the PS data
from Majeste et al.23 and Schausberger et al.24 The
results are shown in Figure 11. As for PE, again no

single c� gives an adequate fit and a value of 0.1 could
be a compromise.

It is interesting to note that, as expected, the product
Ge�e obtained for PS results in a much larger elemen-
tary time �e than that for PE. Using the plateau mod-
ulus of 2 � 105 Pa at 463 K17 (the same value has been
reported at 413 K15), we determine Ge to be 2.5 � 105

Pa. Using a density of 959 kg/m320 for PS, we calculate
Me to be 14,400 g/mol. This value is used to calculate
the Z values. The relaxation time �e is of the order of
10�4 s, whereas it was 10�9 s for PE. All the monomer-
dependent parameters values determined here with
zero-shear viscosity data for PS are in agreement with
those fitted by Likhtman and McLeish4 in their com-
parison with complex moduli experimental data. For
one set of PS data,24 they determined Ge � 2.79 � 105

Pa, �e � 3.36 � 10�4 s, and Me � 12,960 g/mol, at T
� 453 K, and for another set of data,25 they calculated
Ge � 2.69 � 105 Pa, �e � 9.22 � 10�4 s, and Me � 14,470
g/mol, at T � 442.5 K.

In Figure 12, we compare the (d ln �0)/(d ln Z)
calculated from the experimental data of PE and PS
with those obtained from the Likhtman and McLeish4

results for zero-shear viscosity. We use their results in
this application because of the spurious oscillations
introduced into the derivation by the new model for
dM� (�)/d�. The data are sparse and, as was seen with
the viscosity itself, it is difficult to discriminate which
constraint-release parameter best represents the ex-
perimental data for both materials, although this ap-
proach seems to indicate that a value close to 1 is
appropriate at low and high Z values. The peak cal-
culated by the Likhtman–McLeish model4 is not in

Figure 10 Normalized zero-shear viscosity of PE shifted with product Ge�e � 7.5E-3 Pa s�1. Symbols represent experimental
data (Pearson et al.21). Error bars correspond to 10% uncertainty in molecular weight (x-axis) and 5% in viscosity (y-axis)
(smaller than symbols).

TABLE I
Calculation of the Product Ge�e for Polystyrene in the

Low-Z Regime (Z < 2)a

Mw (g/
mol) Zb

�0 (453 K)c

(Pa s�1)
Ge�e

(Pa s�1) �e
d (s)

9.20E
03 6.39E-01 1.17E
01 22.5 9.0E-05
1.02E
04 7.08E-01 1.00E
01 17.3 6.9E-05
1.30E
04 9.03E-01 2.14E
01 28.9 1.2E-04
1.57E
04 1.09E
00 3.78E
01 42.4 1.7E-04
1.62E
04 1.13E
00 3.00E
01 32.5 1.3E-04
1.75E
04 1.22E
00 4.57E
01 45.9 1.8E-04
2.02E
04 1.40E
00 2.81E
01 24.4 9.8E-05
2.50E
04 1.74E
00 8.71E
01 61.1 6.3E-04

a Experimental data are from Majeste et al.22

b Calculated using a value of Me � 14,400 g/mol.
c Data shifted from 433 K using the shift factor of Schaus-

berger et al.23

d Calculated using a value of Ge � 2.5E
05 Pa.
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agreement with experimental data, but the overall
model predictions are in the right range. This is a clear
improvement from the original tube models, which
could not predict a power-law exponent � 3. We
should, however, note that the model approaches 3 at
high molecular weights, which is not clear in the ex-
perimental data.

DISCUSSION

The presence of the constraint-release parameter c�

complicates the determination of the monomer-depen-

dent parameters from experimental data if they are
unknown, which is unfortunately most often the case.
The approach of Likhtman and McLeish4 to set c� � 1
did not give acceptable results for our computations of
zero-shear viscosity of PE and PS. The value of c� � 0.1
proposed by Graham et al.11 seemed more appropri-
ate. We believe that a valuable approach is to deter-
mine the monomer chemistry–dependent parameters
from results for unentangled polymers, thus removing
the complication of constraint release. Then, entangled
polymer data can be used to determine the best value
of c�. However, there may be shifts in the glass tran-

Figure 11 Normalized zero-shear viscosity of PS shifted with product Ge�e � 34 Pa s�1. Symbols represent experimental data
(Majeste et al.23 and Schausberger et al.24). Error bars correspond to 10% uncertainty in molecular weight (x-axis) and 5% in
viscosity (y-axis) (smaller than symbols).

Figure 12 Comparison of the calculated slope of the zero-shear viscosity versus molecular weight for c� � 0 and c� � 1 with
experimental data for PE (Pearson et al.21) and PS (Majeste et al.23 and Schausberger et al.24).
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sition of low molecular weight chains, resulting from
chain ends, which can cause a complication in deter-
mination of the parameters if many sets of data at
various molecular weights are used. Furthermore, it is
possible that the slight amount of polydispersity, con-
tained in all polymers, complicates the analysis. All
these factors might partly account for the deviations
between experiment and theory.

Obviously, the scatter in the experimental data makes
it difficult to determine the value of c� precisely, even
when the monomer-dependent parameters are known.
In this work, a compromise value of c� � 0.1 is used for
PE, but no single value really fits all of the zero-shear
viscosity data. Instead it appears that at very low Z a
lower value of c� is more appropriate and at intermediate
Z a higher c� value is required. At Z � 200 the required
c� decreases again. Similarly, the PS data indicate that a
constraint-release parameter that depends on Z could
improve the fit with c� increasing from low to interme-
diate Z. However, the experimental data end at Z ap-
proximately equal to 200 and we therefore do not see the
decrease of the required c� that we saw with PE. If this
observation is real, then it indicates that higher molecu-
lar weight chains are affected to a greater degree by
constraint release; that is, a single constraint-release
event corresponds to larger jumps in the primary chain’s
tube for higher molecular weights. However, this would
be in contradiction with the concept of a universal value
of c�, considering universal underlying dynamics for the
behavior of entangled polymers.11

The most obvious disagreement between the model
prediction and zero-shear viscosity experimental data
resides in the power-law exponent (d ln �0)/(d ln Z)
versus molecular weight. The predicted peak at inter-
mediate values of Z is not physical, given that the
experimental exponents seen here for PE and PS are
almost flat. However, the prediction of the exponent at
low and high Z values is much better.

Our experience with the Likhtman–McLeish model
leads us to conclude that it is a definite improvement
over previous theoretical models, both in the prediction
of complex moduli and zero-shear viscosity. However,
in its original version it is very computationally inten-
sive, except for computations at short times (t 	 �R) for
which an analytical solution is presented for the relax-
ation function R(t). Therefore, it is not readily usable
without access to the source code. The approximate
closed-form solution proposed here, valid at all times,
should enable a wider use of the model. Indeed, even
with the inherent difficulties in simultaneously deter-
mining the best values of all parameters from experi-
mental data, and the remaining disagreement with ex-
perimental observations for (d ln �0)/(d ln Z), this model
represents a very useful tool for the prediction of exper-
imental data of entangled linear homopolymers in the
linear viscoelastic region, or for the approximate evalu-
ation of monomer-dependent parameters.

CONCLUSION

In this work, we present an approximate closed-form
representation of the Likhtman–McLeish model,
which is valid at all times and simplifies its use. In
addition, analytical integration of the material relax-
ation function G(t) was performed to obtain an expres-
sion for the zero-shear viscosity. Results of the com-
putations of the zero-shear viscosity were compared
with available experimental data for monodisperse
entangled linear PE and PS. The model is considered a
major improvement over previous theoretical models,
both in the prediction of complex moduli4 and zero-
shear viscosity, even if there is still some disagreement
between the predictions and experimental data of the
slope (d ln �0)/(d ln Z) versus molecular weight. The
main difficulty in using this model resides in the si-
multaneous fit of the monomer-dependent and con-
straint-release parameters. It is however considered a
useful tool for the prediction of experimental data of
entangled linear homopolymers in the linear vis-
coelastic regime, or for the approximate evaluation of
monomer-dependent parameters.

The authors gratefully acknowledge the helpful comments
of A. Likhtman and the reviewer.

APPENDIX

Numerical procedure for generating the spectrum
of relaxation rates

We use a slightly modified version of the procedure
described by Rubinstein and Colby.5 The first step in the
numerical procedure is to generate a set of Z mobilities
mi that follow the probability distribution P(�). We do
this by the cumulative probability distribution, CP(�),
which is given in general by eq. (A.1) and specifically for
the theory considered here by eq. (A.2).

CP��� � �
0

�

P��� d� � �
0

�

��1���t�� d� (A.1)

In eq. (A.1) ��1{ } indicates the inverse Laplace trans-
form, t is the Laplace domain variable, and � is the
inverse Laplace domain variable. Note that eq. (A.1) is
simply the definition of a cumulative probability dis-
tribution applied to the differential probability distri-
bution in eq. (6). By substituting eq. (1) for �(t) into eq.
(A.1) and then performing the inverse Laplace trans-
form we produce eq. (A.2):

CP��� � CP1��� � CP2���

where
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CP1��� �
8G̃f

�2 �
0 � �

1
�df

�
p�1
odd

����df 1
p2

1
�df

� � �
�p*�2

�df

�
p�1
odd

p* 1
p2 � �

�p*�2

�df

and

CP2��� � 4�0.306
Z�e

1/4�� 0 � � �*
1

��*�1/4 	
1

���1/4 � � �* (A.2)

In eq. (A.2), the cumulative probability function
CP1(�) corresponds to the reptation term in �(t) and

Figure A.1 Cumulative probability distribution [eq. (A.2)] for Z � 300. The steps correspond to the reptation modes and the
curved portions correspond to CLF.

Figure A.2 Demonstration of generation of reduced mobilities, Z � 150.
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CP2(�) corresponds to the CLF term. The cumulative
probability distribution for Z � 300 is shown in
Figure A.1.

Next, Z random numbers Ri between 0 and 1 are
generated and the corresponding kmi are found, as
indicated on Figure A.2 for Z � 150. This procedure
results in a set of reduced mobilities (with dimensions
of inverse time) that follow the probability distribu-
tion P(�).

The next step is to solve the following set of recur-
sive equations. The fraction of negative Si at a partic-
ular � is M(�)4,5:

Si � kmi � kmi
1 	 � 	
�kmi�

2

Si�1
for 2 � i � Z 	 1

S1 � km1 � km2 	 � (A.3)

where k, the elastic constant of the sections of the
chains, is equal to 3kBT/a2. For more details about this
calculation see Rubenstein and Colby.5
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